SQUARE ROOTS

THE INVERSE OF A SQUARE IS A SQUARE ROOT.

$$
\begin{array}{ll}
\frac{\sqrt{1}=1}{\sqrt{4}=2} & \frac{\sqrt{36}=6}{\sqrt{49}=7} \\
\sqrt{9}=3 & \overline{\sqrt{64}}=8 \\
\sqrt{16}=4 & \frac{\sqrt{81}=9}{\sqrt{25}=5} \\
\frac{\sqrt{100}=10}{}
\end{array}
$$

$$
\begin{aligned}
& \frac{\sqrt{121}=11}{\sqrt{144}=12} \\
& \frac{\sqrt{169}=13}{}
\end{aligned}
$$

ROOTS (CONTINUED)

THERE ARE INFINITE TYPES OF

 ROOTSCUBE ROOTS

$$
\begin{aligned}
& \sqrt[3]{0}=0 \\
& \sqrt[3]{1}:=1 \\
& \sqrt[3]{8}=2
\end{aligned}
$$

4TH,5TH, ETC. ROOTS

ROOT PARTS

RATIONAL EXPONENTS

YOU CAN WRITE RATIONAL

 EXPONENTS BY USING ROOTS. RATIONAL EXPONENTS: Fraction

RATIONAL EXPONENTS

YOU CAN WRITE ROOTS BY USING RATIONAL EXPONENTS.

$a^{\frac{n}{m}}=\sqrt[m]{a^{n}}$

1. Rewrite 2. Rewrite

$(10 n)^{\frac{3}{2}}$

$a^{\frac{n}{m}}=\sqrt[m]{a^{n}}$

3. Rewrite 4. Rewrite

$2^{\frac{5}{3}}$

$\frac{1^{(5 x)^{-\frac{5}{4}}}}{5 x^{5 / 4}}=\frac{1}{\sqrt[4]{(5 x)^{5}}}$

